

Mark Scheme (Results)

October 2017

Pearson Edexcel International Advanced Level In Chemistry (WCH06) Paper 01 Chemistry Laboratory Skills II

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

November 2017
Publications Code WCH06_01_1710_MS
All the material in this publication is copyright
© Pearson Education Ltd 2017

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
 - i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
 - ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
 - iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

/ means that the responses are alternatives and either answer should receive full credit.

() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

Phrases/words in **bold** indicate that the <u>meaning</u> of the phrase or the actual word is **essential** to the answer.

ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities. Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Question Number	Acceptable Answers		Reject	Mark
1(a)	Any two from:			(2)
	$Fe^{2+} / [Fe(H_2O)_6]^{2+}$	(1)	Fe ³⁺	
	$Ni^{2+} / [Ni(H_2O)_6]^{2+}$	(1)		
	Cr ³⁺	(1)	Cr ²⁺	
	ALLOW (1) for $[Cr(H_2O)_6]^{3+}$ / V^{3+} / $[V(H_2O)_6]^{3+}$ / Cu^{2+}			
	IGNORE names / state symbols / missing squabrackets	ire		
	If no other mark is awarded: ALLOW (1) for two names with oxidation numbers			

Question Number	Acceptable Answers	Reject	Mark
1(b)(i)	Cr³+ / [Cr(H₂O) ₆]³+ IGNORE names / state symbols/ missing square brackets		(1)

Question	Acceptable Answers	Reject	Mark
Number			
1(b)(ii)	[Cr(OH) ₆] ³⁻	OH-	(1)
	ALLOW [Cr(H ₂ O) ₂ (OH) ₄] ⁻ / [Cr(OH) ₄] ⁻ / CrO ₂ ⁻ IGNORE name / state symbol		

Question	Acceptable Answers	Reject	Mark
Number			
1(c)(i)	Chromate and (VI) / VI / +6 / 6+ ALLOW CrO ₄ ²⁻ and (VI) / VI / +6 / 6+	Incorrect formula e.g. Cr ₂ O ₇ ²⁻	(1)

Question Number	Acceptable Answers		Reject	Mark
1(c)(ii)	Gas: ammonia / NH₃	(1)	ammonium / NH ₄ / NH ₄ ⁺	(2)
	Ionic equation: $NH_4^+ + OH^- \rightarrow NH_3 + H_2O$	(1)		
	IGNORE state symbols, even if incorrect / non-ionic equation			

Question Number	Acceptable Answers	Reject	Mark
1(d)	Barium sulfate / BaSO ₄		(1)

Question	Acceptable Answers	Reject	Mark
Number			
1(e)	$NH_4Cr(SO_4)_2 / (NH_4)_2SO_4.Cr_2(SO_4)_3$		(1)
	ALLOW		
	Correct neutral formulae with any Cr ³⁺ : NH ₄ + ratio		
	e.g. $Cr(NH_4)_3(SO_4)_3 / (NH_4)_2Cr_2(SO_4)_4$		
	ALLOW species in any order		
	ALLOW species with charges e.g. $NH_4^+Cr^{3+}(SO_4^{2-})_2$	Species with charges giving a net charge	
	IGNORE		
	Missing dot /		
	water of crystallisation		
	TE on (b)(i) (c)(ii) and (d)		
	e.g. (NH ₄) ₂ SO ₄ .FeSO ₄		

(Total for Question 1 = 9 marks)

Question Number	Acceptable Answers		Reject	Mark
2(a)(i)	(Gas) hydrogen chloride / HCl / HCl(g) ALLOW HCl(aq) / hydrochloric acid	(1)		(2)
	(Group) OH / -OH / alcohol / hydroxy / hydroxyl	(1)	OH ⁻ / hydroxide / carboxylic acid	

Question Number	Acceptable Answers	Reject	Mark
2(a)(ii)	Tertiary / 3° alcohol	Carboxylic acid	(1)
	ALLOW Not primary and not secondary alcohol		
	IGNORE D cannot be oxidised / not aldehyde / just `-OH'		

Question Number	Acceptable Answers	Reject	Mark
2(b)	ALLOW OH / CH ₃ IGNORE connectivity to vertical OH but penalise OH-C on left ALLOW displayed formula of propanoic acid		(1)

Question Number	Acceptable Answers	Reject	Mark
2(c)(i)	Penalise methyl ketone for ketone once only in (c)(i) and (c)(ii) Aldehyde / CHO / / / or ketone / R ₂ C=0 / Both aldehyde and ketone needed for the mark ALLOW Carbonyl IGNORE Just C=0	Carboxyl	(1)

Question Number	Acceptable Answers	Reject	Mark
2(c)(ii)	Ketone		(1)

Question Number	Acceptable Answers	Reject	Mark
2(d)(i)	H O H H H	Incorrect names in addition to formulae once only	(2)
	H H O H H	Minor errors once only e.g. H missing / bond missing Pentavalent carbons in each structure	
	ALLOW Isomers in either order Structural / skeletal / displayed formulae or any combination of these TE if aldehyde identified in (c)(ii) for (1) mark	Structure	

Question Number	Acceptable Answers	Reject	Mark
2(d)(ii)	Reagents – standalone mark		(3)
	Iodine / I ₂ (in potassium iodide / KI) / KI ₃		
	and sodium hydroxide / NaOH (solutions) OR	NH₃ as alkali	
	Potassium iodide / KI and		
	sodium chlorate(I) / NaOCl (solutions)		
	ALLOW Iodine and alkali (1)		
	Observations – conditional on at least one ketone in (d)(i)		
	(Observation for pentan-2-one) (Pale) yellow precipitate /ppt /ppte / solid (with antiseptic smell) (1)	White ppt	
	IGNORE yellow colour		
	(Observation for pentan-3-one) No change / no precipitate /no ppt/ no ppte / no solid		
	ALLOW No reaction No change in colour / remains colourless / remains (pale) yellow (1)	Other colours e.g. brown	
	No TE on structures in (d)(i)		
	IGNORE References to spectroscopy		

(Total for Question 2 = 11 marks)

Question Number	Acceptable Answers	Reject	Mark
3(a)	Correct answer, with or without working, scores (3) First mark - calculating moles of O_2 Mol O_2 = 20/24000 or 0.02/24 = 0.00083333 / 8.3333 x 10^{-4} ALLOW 1/1200 OR Mol O_2 = 20/24 = 0.833 (1)		(3)
	Second mark - using mole ratio Mol H_2O_2 (in 1 cm ³) $= 2 \times 0.00083333$ $= 0.00167 / 1.67 \times 10^{-3}$ ALLOW 1/600 OR Mol H_2O_2 (in 1 dm ³) $= 2 \times 0.833$ $= 1.67$ TE on mol O_2 (1)		
	Third mark – calculating concentration of H_2O_2 This is dependent on a mole ratio being used in the calculation		
	$\begin{array}{l} \text{Concentration } H_2O_2\\ &=0.00167\times 1000\\ &=1.67\ (\text{mol } dm^{-3})\\ \text{OR}\\ \text{Recognition that there are } 1.67\ \text{mol } H_2O_2\\ \text{in } 1\ dm^3\ \text{so concentration} = 1.67\ \text{mol } dm^{-3}\\ \text{TE on mol } H_2O_2 \end{array}$		
	ALLOW 5/3 and $1^2/_3$ (1)		
	IGNORE SF except 1 SF		
	Do not penalise final answer from correct rounding of intermediate answers e.g. 1.6 / 1.66 (mol dm ⁻³) from 0.83 / 0.000833		

Question Number	Acceptable Answers	Reject	Mark
3(b)(i)	(Rinse it with distilled water followed by) rinse it with the hydrogen peroxide / solution (it will be filled with) ALLOW rinse with water and hydrogen peroxide IGNORE just clean / rinse / dry	Rinse with hydrogen peroxide and water Rinse with hydrogen peroxide then water	(1)

Question Number	Acceptable Answers	Reject	Mark
3(b)(ii)	Shake / invert the solution		(1)
	ALLOW any indication of mixing e.g.stir		

Question Number	Acceptable Answers	Reject	Mark
3(b)(iii)	The nozzle / jet of the burette is full / has no air bubbles		(1)
	ALLOW		
	The part below the tap is full (of solution) OR		
	The gap is full (of solution) / the bottom part is full (of solution) OR		
	There are no (air) bubbles / check for air gaps OR		
	The funnel has been removed		
	IGNORE References to reading from the bottom of the meniscus / reading at eye level Check that the tap is closed		

Question Number	Acceptable Answers	Reject	Mark
3(b)(iv)	(25 cm³) measuring cylinder ALLOW Beaker with 25 cm³ graduation mark / 50 cm³ beaker / 100 cm³ beaker / 100 cm³ or 50 cm³ conical flask with graduation mark / syringe IGNORE just 'beaker' / 'conical flask'	pipette burette volumetric flask	(1)

Question Number	Acceptable Answers	Reject	Mark
3(b)(v)	(From) colourless (to permanent pale) pink	Colourless to purple / mauve / red	(1)
	Both colours needed for the mark IGNORE clear	Pink / purple / mauve to colourless	

Question Number	Acceptable Answers	Reject	Mark
3(b)(vi)	Results that are within $0.1 / 0.2$ (cm 3 of each other)		(1)
	ALLOW Results that are similar and a specific example within 0.1 / 0.2 e.g. 25.00 and 25.20 (cm ³)		
	Results that are within $\pm 0.1 / \pm 0.2$ (cm ³ of each other)		
	IGNORE Just 'results that are (almost) the same' / results that are close together / results within a stated % of each other		

Question Number	Acceptable Answers	Reject	Mark
3(b)(vii)	Correct answer, with or without working, scores (4)		(4)
	Mol MnO ₄ ⁻ used $= \frac{15.80 \times 0.0200}{1000}$ $= 0.000316 / 3.16 \times 10^{-4}$ (1)		
	Mol H_2O_2 in 25.0 cm ³ $= 0.000316 \times 5$ 2		
	$= 0.000790 / 7.90 \times 10^{-4}$ TE on mol MnO_4^- (1)		
	Concentration diluted H_2O_2 = 0.000790×1000 25.0		
	= $0.0316 \text{ (mol dm}^{-3}\text{)}$ TE on mol H_2O_2 in 25.0 cm ³ (1)		
	Concentration original H_2O_2 = 0.0316×250.0 10.0 = $0.790 / 0.79$ (mol dm ⁻³)		
	TE on concentration diluted H_2O_2 (1)		
	Alternative method for 3^{rd} and 4^{th} marks Mol H_2O_2 in 250.0 cm ³ / (original) 10.0 cm ³ = 0.000790 x 10 or 0.000790 x 250.0		
	25.0 = 0.00790		
	TE on mol H_2O_2 in 25.0 cm ³ (1)		
	Concentration original H_2O_2 = 0.00790 x $\frac{1000}{10.0}$ = 0.790 / 0.79 (mol dm ⁻³) TE on mol H_2O_2 in 250.0 cm ³ / (original) 10.0 cm		
	IGNORE SF except 1SF		

Question Number	Acceptable Answers	Reject	Mark
3(c)	$\frac{2 \times 0.05}{15.80} \times 100 =$	0.31646 (%)	(1)
	(±)0.63291 / 0.6329 /0.633 / 0.63 / 0.6(%)		

Question Number	Acceptable Answers	Reject	Mark
3(d)	(Some of) the hydrogen peroxide had already decomposed (slowly, to form water and oxygen) OR (Some of) the hydrogen peroxide had formed / reacted to form oxygen / water OR (Some of) the hydrogen peroxide had undergone disproportionation / oxidation and reduction IGNORE Just oxidation / just reduction Hydrogen peroxide has low boiling / melting temperature Water formed dilutes the hydrogen peroxide	Any references to a reaction with MnO ₄ Water /hydrogen peroxide evaporates Hydrogen is formed	(1)

(Total for Question 3 = 15 marks)

Question Number	Acceptable Answers	Reject	Mark
4(a)(i)	As a (mutual/co) solvent (for the ester and sodium hydroxide solution) OR Dissolves ester and sodium hydroxide / both substances / the mixture OR To allow the ester and sodium hydroxide (solution) to mix / dissolve / become miscible ALLOW Dissolves the ester IGNORE To allow the ester and sodium hydroxide to react / References to the product dissolving	Catalyst	(1)

Question Number	Acceptable Answers	Reject	Mark
4(a)(ii)	First mark Heating to increase / speed up the rate of reaction /make the reaction faster ALLOW To overcome / provide the (high) activation energy / reaction is slow at room temperature (1)		(2)
	IGNORE Just 'to provide energy for the reaction' Second mark Refluxing to prevent loss of (volatile) reactants / products OR So that (volatile) reactants / products return to the flask	Just 'to prevent evaporation'	
	ALLOW To condense the gases / vapours formed To prevent gas / vapour escaping So that reaction goes to completion (1) IGNORE To condense the mixture / any reference to flammable gases		

Question Number	Acceptable Answers	Reject	Mark
A(a)(iii)	filter paper to (vacuum) pump / aspirator/ (water)tap /suction		(3)
	(Top label) Filter paper ALLOW Sintered glass (1) IGNORE Porous filter / Buchner funnel	Fluted filter paper	
	(Lower label) To (vacuum) pump / aspirator/ (water)tap /suction ALLOW To vacuum (apparatus) / reduced pressure (1)	Waste gas / gas out /pressure out	
	(Reason) Faster /speeds up (filtration) OR (Product / benzoic acid is) drier ALLOW Filtrate / soluble impurities / solvent is removed	Reference to removing insoluble impurities	
	and more completely / efficiently OR Dries the benzoic acid (1)		

Question Number	Acceptable Answers	Reject	Mark
4(a)(iv)	Dissolve/ add the benzoic acid / (impure) solid / crystals in the minimum (volume / amount) of boiling / hot water ALLOW use of solvent for water	Incorrect solvent	(1)

Question Number	Acceptable Answers	Reject	Mark
4(a)(v)	Correct answer, with or without working scores (4)	3	(4)
	First mark Mass of ester/ $X = 3.0 \times 1.02 = 3.06$ (g) (1)		
	Second mark moles of ester/ $X = \frac{3.06}{164} = 0.018659$ (1)		
	Third mark EITHER Theoretical mass benzoic acid = 0.018659 x 122 = 2.2763 (g)		
	TE on moles of ester/ X		
	OR Moles of benzoic acid produced = 1.45/122 = 0.011885		
	TE on moles of ester/X (1)		
	Fourth mark EITHER % yield = 1.45 x 100 = 63.6987(%) 2.2763		
	TE on theoretical mass benzoic acid		
	OR % yield = 0.011885 x 100 = 63.6987(%) 0.018659		
	TE on moles benzoic acid produced (1)		
	IGNORE SF except 1 SF		

Question Number	Acceptable Answers	Reject	Mark
4(b)	O CH ₂ CH ₃ O CH ₃ CH ₃ (1)	Any missing H from non- skeletal formulae once only	(2)
	(1)		
	Structures can be in either order		
	ALLOW displayed, skeletal, structural formulae or any combination of these		

Question Number	Acceptable Answers	Reject	Mark
4(c)		Incorrect ester scores (0)	(2)
	First mark Identification of X as isopropylbenzoate (1)		
	Second mark Identification of proton responsible for peak P and Identification of both sets of protons responsible for peak Q ALLOW carbon atoms / CH and CH ₃ groups labelled ALLOW just 1 proton in each CH ₃ group labelled (1)	Additional protons circled e.g. in benzene ring	
	IGNORE Missing benzoate group / circle in benzene		

(Total for Question 4 = 15 marks)